L T P C 4 0 0 3

#### WATER RESOURCES ENGINEERING-I

# **Course Learning Objectives:**

The course is designed to

- introduce hydrologic cycle and its relevance to Civil engineering
- make the students understand physical processes in hydrology and, components of the hydrologic cycle
- appreciate concepts and theory of physical processes and interactions
- learn measurement and estimation of the components hydrologic cycle.
- provide an overview and understanding of Unit Hydrograph theory and its analysis
- understand flood frequency analysis, design flood, flood routing
- appreciate the concepts of groundwater movement and well hydraulics

#### **Course Outcomes**

At the end of the course the students are expected to

- have a thorough understanding of the theories and principles governing the hydrologic processes,
- be able to quantify major hydrologic components and apply key concepts to several practical areas of engineering hydrology and related design aspects
- develop Intensity-Duration-Frequency and Depth-Area Duration curves to design hydraulic structures.
- be able to develop design storms and carry out frequency analysis
- be able to determine storage capacity and life of reservoirs.
- develop unit hydrograph and synthetic hydrograph
- be able to estimate flood magnitude and carry out flood routing.
- be able to determine aquifer parameters and yield of wells.
- be able to model hydrologic processes

### **SYLLABUS:**

**UNIT I Introduction**: Engineering hydrology and its applications, Hydrologic cycle, hydrological data-sources of data.

**Precipitation**: Types and forms, measurement, raingauge network, presentation of rainfall data, average rainfall, continuity and consistency of rainfall data, frequency of rainfall, Intensity-Duration-Frequency (IDF) curves, Depth-Area-Duration (DAD) curves, Probable Maximum Precipitation (PMP), design storm

**UNIT-II Abstractions from Precipitation**: Initial abstractions.

Evaporation: factors affecting, measurement, reduction

Evapotranspiration: factors affecting, measurement, control

**Infiltration**: factors affecting, Infiltration capacity curve, measurement, infiltration indices.

**UNIT-III Runoff:** Catchment characteristics, Factors affecting runoff, components, computation- empirical formulae, tables and curves, stream gauging, rating curve, flow mass curve and flow duration curve.

**Hydrograph analysis**: Components of hydrograph, separation of base flow, effective rainfall hyetograph and direct runoff hydrograph, unit hydrograph, assumptions, derivation of unit hydrograph, unit hydrographs of different durations, principle of superposition and S-hydrograph methods, limitations and applications of unit hydrograph, synthetic unit hydrograph.

**UNIT-IV Floods:** Causes and effects, frequency analysis- Gumbel's and Log-Pearson type III distribution methods, Standard Project Flood (SPF) and Probable Maximum Flood (MPF), flood control methods and management.

**Flood Routing:** Hydrologic routing, channel and reservoir routing-Muskingum and Puls methods of routing.

**UNIT-V Groundwater:** Occurrence, types of aquifers, aquifer parameters, porosity, specific yield, permeability, transmissivity and storage coefficient, types of wells, Darcy's law, Dupuit's equation- steady radial flow to wells in confined and unconfined aquifers, yield of a open well-recuperation test.

**UNIT VI Advanced Topics in Hydrology:** Rainfall-runoff Modelling, instantaneous unit hydrograph (IUH) - conceptual models - Clark and Nash models, general hydrological models- Chow - Kulandaiswamy model.

## **Text Books:**

- 1. Engineering Hydrology, Jayarami Reddy, P., Laxmi Publications Pvt. Ltd., (2013), New Delhi
- 2. Irrigation and Water Power Engineering, B. C. Punmia, Pande B. B. Lal, Ashok Kumar Jain and Arun Kumar Jain, Lakshmi Publications (P) Ltd.

## **References:**

- 1. Engineering Hydrology Subramanya, K, Tata McGraw-Hill Education Pvt Ltd, (2013), New Delhi.
- 2. Irrigation Engineering and Hydraulic Structure, Santosh Kumar Garg, Khanna Publishers.
- 3. Applied hydrology, Chow V. T., D. R Maidment and L.W. Mays, Tata McGraw Hill Education Pvt Ltd, (2011), New Delhi.
- 4. Water Resources Engineering, Mays L.W, Wiley India Pvt. Ltd, (2013).